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The Ellipsoidal Gaussian Basis in 
Molecular Orbital Theory 

I. Integral Formulas and Test Calculations 

Drora Cohen and Harold Basch 

Department of  Chemistry, Bar Ilan University, Ramat-Gan, Israel 

New analytic integral formulas are presented for the potential energy integrals over 
ellipsoidal Gaussian basis functions [~ exp ( - a x  2 - ~y2 _ 7z2)] that enter into solv- 
ing the conventional expansion self-consistent field equations. Near minimal atomic 
orbital bases combined from large nuclear-centered primitive Gaussian sets are used 
in test calculations on the HF and CO molecules. The ellipsoidal exponential parameters 
for the valence atomic orbitals are fully optimized using a single scale factor for each 
atomic orbital and nuclear coordinate. The results are compared with those obtained 
using an unoptimized nuclear centered double-zeta spherical Gaussian basis. 
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1. Introduction 

Boys' suggestion [ 1 ] to use generalized spherical Gaussian basis functions of the form, 
~ M y m z  n exp ( - a r  2) in molecular quantum mechanical calculations opened a new era in 
computational chemistry. As used to solve the matrix Hartree-Fock equations, combined 
sets of Gaussian functions proved to be reasonably accurate and required an integral evalu- 
ation time that was not excessive compared to the time and effort needed to solve the 
conventional self-consistent field (SCF) equations. Today the time-consuming step in carry- 
ing out a molecular ab initio SCF calculation is typically in the latter step and those steps 
subsequent or alternate to it such as, for example, configuration interaction. 

The use of different size extended (larger than minimal atomic) basis sets with the same 
number of primitive (individual) Gaussian functions results in the integral evaluation time 
remaining essentially unchanged with extension of the basis set while the solution of the 
SCF equations becomes more and more time consuming. This specific example clearly 
demonstrates the practical and general need of using the smallest possible basis set size 
to achieve maximum accuracy even at the possible expense of larger integral evaluation 
times. Exponential basis functions (Slater orbitals) do not seem to answer this need 
because of their relatively high integral evaluation times and, more importantly, the 
additional requirement of an extended basis set for reasonably accurate results. Ideally, 
one needs a basis set that will give good results at, or very near to, the minimal 
atomic orbital basis level. 

An extension and improvement on the conventional (spherical) Gaussian set has been 
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suggested by Browne and Poshusta [2] in the generalized ellipsoidal Gaussian, ~xlymn n 
exp ( - ~ x  2 - / 3y  2 - 7z2). This function can be written in the following way: 

xly'nz n exp ( - ~ x  2 - / 3y  2 - 7z 2) 

= xlymz n exp ( - 6 r  2) exp [(6 - (~)x 2 ] exp [(6 - ~)y2] exp [(6 - 7)z 2 ] 

~ . , ( _  1)i(6 _ oOix2i ~ , ( _  1)j(~ _ {j)jy2j ~ . , ( _  1)k(6 _ 7)kZ2k 
exp (--~r 2 ) Z, ii /-. /., /-; i j k 

=xlymznexp(-6r2)  2 2 ~. Aiikx2iy 2iz2k (1) 
i j k 

where Aij k in the last row contains all the missing terms found in the previous row and the 
value of ~ is arbitrary. This formulation shows that the ellipsoidal Gaussian can be con- 
sidered to be equivalent to a spherical Gaussian multiplied by a fixed sum of all products 
of  even powers of  the coordinates. The expansion form in Eq. (1) is similar to the use of  
a complete system of functions suggested by Boys and Rajagopal [3, 4] with the restric- 
tions here that each function has a fixed, pre-determined weighting or coefficient and 
that the type or symmetry  of  the base function (defined by the values of  l, m, and n) is 
not changed by the expansion. Thus the expansion part of  (1) has the property of  preserv- 
ing the base function type while increasing its flexibility as a basis function. This descrip- 
tion is similar to that of  using a double-zeta set of  functions of  a given orbital type in 
place of  a single-zeta representation in ordinary exponential or spherical Gaussian basis 
sets. Thus it is possible that a properly optimized single-zeta (meaning really as many as 
three different exponential factors, ~,/3, and 7) ellipsoidal function could be equivalent to 
a double-zeta representation in a spherical Gaussian basis. 

In most actual applications of  ellipsoidal Gaussians to date advantage has been taken of  
their increased functional flexibility to construct single ellipsoidal Gaussian floating bond 
orbitals, which are the localized electron pair orbitals of  the system [5-13] .  This limited 
application is presumably due to the integral evaluation having been found to be very time 
consuming. There appears to have been only one serious effort at using ellipsoidal 
Gaussians as conventional nuclear centered basis function using a combined set of  functions 
[ 18]. This study found that the improvement  obtained for the ground state energy of  H~ 
in the ellipsoidal limit was some 40% of  the difference between the spherical limit and the 
exact energy. 

Integral formulas for the overlap and energy (kinetic, nuclear attraction, and electron 
repulsion) integrals involving ellipsoidal Gaussians have been published typically in a form 
that included numerical integration [2, 11, 14, 17]. Katriel and co-workers [15, 16] 
derived analytic formulas for the overlap and energy integrals based on the following one- 
dimensional product expansion: 

exp ( - c q x ~ )  exp ( -oz2x~)  = ~ CI exp(-lc~x~)H](x/~Xp) (2) 
j=o 

where ~ is arbitrary, the functions on the right-hand side are harmonic oscillator eigen- 
functions, and the coordinate xp can be chosen in the usual manner [ 19]. This approach 
suffers from the well-known disadvantages of  trying to expand the product of  two differ- 
ently centered functions about a third center with severe constraints upon the parameters 
defining the functional form on the third center. In this case, these restrictions take the 
form of requiring a common c~ for all three coordinate direction (x, y ,  and z) expansions, 
and, in the case of  the potential energy integrals, limitations on the location of the expan- 
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sion center. Thus in Eq. (2) for functions where the centers A and B are far apart or where 
one of the exponents (~1 or a2) is large, convergence is very slow. 

In order to investigate the possible large basis-analogue properties of ellipsoidal functions 
and test their use as a conventional nuclear centered basis using combined sets of functions 
we have carried out near-minimal atomic orbital basis ellipsoidal SCF calculations on the 
CO and HF molecules. New, completely analytic integral evaluation formulas, based on the 
analysis in Eq. (1), for the potential energy integrals have been developed which have been 
found to be considerably more efficient than previous methods [ 15, 18]. 

2. Integral Formulas 

The product of two ellipsoidal Gaussians on centers A and B is given by, 

N, e x p ( - c h x  A - t3ay2A -- ylZ2A)N2 exp(--a2x ~ -- ~zY~ -- 72z~) = 

{N1N2 exp [ - c~1a27~x2 ] exp [-/31/3~A--B~ ] exp [ - T1 ~ m l  } 

~ 2 r 2 exp(--axp tfy~ - - l 'zp) (3) 

where N1 and N2 are the single ellipsoidal Gaussian normalization constants, Px = ( f f l  Ax + 
a2Bx)/a', and c~' = cq + a2 etc., and the notation is the usual one [20-23]. The non-con- 
stant part of the right-hand side of (3) can be written as, 

' 2  _ .y ] P 2 , t e x p ( - a X p  13'y~ - Z p .  = e x p @ a r  2) exp [(a - /3')y~] exp [ ( a ' -  7')z~,] 

k m a x  
Jmax  (0~ ' - -  ~ ' ) f y ~  (or' - -  ~ " ) k Z 2 k  

= exp( -a '@) i  =0]~ (--1) / )~ s ( -1)k  k! 
k=o 

(4) 

1max and kma x are set by some pre-determined accuracy criterion for convergence of the 
integral value. Eqs. (3) and (4), together with the usual method of integral evaluation 
[20-23] for spherical Gaussians of the general form, 

x 2 i _ 2 j _ 2 k  exp@a'r~) P Y p  z p  (5) 

are the basis of the integral formulas used in this study for the nuclear attraction and elec- 
tron repulsion integrals. 

We here present integral formulas only for s-type (l = m = n = 0 in Eq. (1)) Gaussians for 
simplicity. Extension to higher angular momentum types (i.e. p-type, for example) is 
straightforward with the recognition that, for example, for the x-coordinate: 

x ~ x ~  = (Xp + P'Ax) q (xp + P-Bx) t~ 

which is then expanded by the usual binominal expansion [20-23]. This adds a fixed sum 
of terms each of which modifies the power ofxp in Eq. (5). 

2.1. Nuclear Attraction Integrals 

/ N A  = N 1 N 2 ( e x p ( - - c q x  2 - -  ~ l y 2 A  - -  " ) ' 1z2 ) [  1/rc [ e x p ( - - ( ~ 2  x 2  --  132y 2 --  3 ' 2 z 2 ) )  
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The final formula is: 

INA=NiN2exp[-a lc~ ,]Ag:]exp[-313~A--BYZ]exp[-3"17~2Z]x  

]max tCmax (p-c2 / 
x E~ Du(P"Cy, a', 3") Ev Dv(P"Cz' a; 3")Fu+ v \--~1 

[v'Jmax-vl (_l),O (p-Cz] u-w , , 
Dv(P-'-Cz, a', 7') = E r - 60)! \ ~ - ]  Bv+va(a, 3' ) 

c o = O  

/'max (_l)U/2u!(o, - T,)u/2 
Bv(a', 3") = v! E (v-even) 

(pc21 1 
Fu+v \ 46 ] = Incomplete Gamma Function; 5 = 4a--7 

The brackets for the upper limit in the sum over co in the D-function signifies the smaller 
of the two numbers within the brackets. 

2.2. Electron Repulsion Integrals 

IER = N1N2NaN4(exp(-%X2A - 31Y2A -- 3'1z~) exp(--a2 x2 -- 32Y 2 -- 3'2z2)11/q2l 

exp(--~ax ~ -- ~33y ~ -- 73z~) exp(--%x 2 -- 34y 2 -- 3'4z2)) 

The final formula is: 

[ -- al ~ A"-Bx2 ] exp I ~ 11G;,A--B~ ] exp [ - 3'13'<z2 ] x IER = N,N2N3N4 exp [ ~; ] 

exp [-%a4C-D2x]exp[-333;,C~]exp[-TaT~TC~ 2 z ~ - 5  ] ]]x 

k m a x + S m a x  [ Q - - p 2 ~  J m a x + r m a x  ~ . t . ~ t t " x ~ ,  

x y Hu(QPy, a', a ,3 , f l  ) E av(QPz, a , a " , ' Y , 7  )ru+v~-~-]  
g P 

[ v, kmax+Smax-- vl 

n = O  

. . . .  [ 1 " ~  rn m 
, I~--~) 3")Em_u(a, (m even) Gm(O/, O[' 7 , 3 ' )  = m! E Eu( a', ' " 3") 

u = O ( 2 )  

 [111 = -- - -  + Qx - ,, , 5 4 a ' a 

(v even) 

tt oz = ~3 + r etc. 
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rma x and Sma x are the respective analogous parameters for electron two corresponding to 
]max and kma x for electron one. ~-~2 is defined as I Q - P 12 �9 

2.3. Overlap and Kinetic Energy 

The overlap and kinetic energy integrals were computed according to the methods of  
Browne and Poshusta [2].  

The incomplete gamma function appearing in the potential energy integrals was evaluated 
using a FORTRAN subroutine found in POLYATOM/II [24] for the highest index needed 
with subsequent recursion downwards for smaller indices. For the (geometrically) linear 
systems studied here the sum over] in Eq. (4) does not appear since ~' = ;3'. The value of  
kma x was chosen to insure an accuracy of  at least 10 -8 a.u. in the integral values. 

3. Basis Set 

Based on the arguments presented previously it was thought desirable and appropriate to 
try a minimal or near-minimal atomic orbital basis. Additional consideration centered 
about the shape of  the charge density in molecules both close to the atomic nuclei and in 
the valence region. In the former it is clearly expected that the charge distribution will 
remain spherical about the atoms and very much atomic-like. Thus a very limited basis 
representation could very well show only a small tendency to go elliptical. An adequate 
basis description for the core region is also required to prevent the valence shell basis on 
one center from tending only to improve the core region on an adjacent center. The 3 s 
basis contraction of  Dunning [25] (ls, is', 2s) for first-row atoms made up from the nine 
spherical Gaussian primitives of  Huzinaga [26] is sufficiently small in terms of  number of  
basis functions, and sufficiently flexible and accurate in the core region so as to serve the 
objectives of  this work. The atomic orbitals for the first-row atoms were taken as the 
completely contracted (or combined) five p-type primitives of  Huzinaga [26].  For the 
hydrogen atom the completely combined set of Basch [27] with a scale factor of  (1.2) 2 
was used. Thus we will refer to the contracted basis used here as [3SlP/1 s] and the 
primitive basis as (9s5P/4S). 

4. Methods and Results 

Self-consistent field calculations were carried out on the ground electronic states of  HF 
(R = 1.7328 a.u.) and CO (R = 2.13 a.u.) in the Gaussian basis and using the integral 
formulas described in the previous sections. Initially results were obtained in the [3SlP/1 s] 
and [4s2P/2 s] spherical Gaussian bases. The latter is the traditional double-zeta (spherical) 
Gaussian basis set. All subsequent work was done with the former size basis. 

Optimized ellipsoidal Gaussian exponents (a,/3 and 7 in Eq. (1) where for the coordinate 
system used here for linear molecules a = t3) for the valence atomic orbitals (2s, 2px, 2py, 
and 2pz on carbon, oxygen and fluorine, and ls on hydrogen) were obtained for both the 
HF and CO molecules each in a two-step process. Initially, the spherical Gaussian basis 
exponents were optimized by scaling all the primitives of  a given combined atomic orbital 
until an energy minimum was found. For this purpose the STEPIT program of  J. P. Chandler 
[28] was used optimizing one atomic orbital at a time. Subsequently, the z exponential 
factor alone (7) of  each atomic orbital was optimized in the same fashion, again using a 
common scale factor for all primitives of  a given orbital. Finally, the entire process was 
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Table 1. Energy optimized exponent scale factors for spherical 
and ellipsoidal Gaussian atomic orbitals in HF 

Atomic orbital 

Optimized scale factors a 

Spherical Gaussian Ellipsoidal Gaussian 

a, t3 3" 
H l s  1.612 1.739 1.521 
F 2s 0.986 1.003 0.971 
F 2Px , 2py 0.950 0.953 0.922 
F 2pz 0.989 0.991 0.971 

a Actual exponents are obtained by multiplying the scale factor 
times all C-aussian primitives of a given atomic orbital in the 
basis described in the text. 
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repeated for the x y  exponents (a,/3) starting with the already obtained optimized 
spherical and ellipsoidal results. In all the opt imizat ion procedures the coefficients of  the 
individual Gaussian functions in a given atomic orbital  were kept  at their initial values 
[25, 271. 

The results are tabulated in Tables 1 and 2 for the optimized scale factors and in Table 3 
for the corresponding energy quantities. 

5. Discussion 

The total  energies for the HF and CO molecules in Table 3 can be used immediately to 
test the expectat ion that a minimal atomic orbital ellipsoidal Gaussian basis set will give 
roughly similar results to a standard double-zeta spherical Gaussian basis. For  HF the 
ellipsoidal basis gives some 83% of  the energy difference between the unopt imized 
spherical [3SlP/1 s] Gaussian basis and the corresponding double-zeta set results, while 
for CO this percentage drops to 51%. For both  systems, however, the greater part  of  the 
energy lowering is due to the spherical opt imizat ion rather than to the ellipticity. Clearly 
more experience is needed with a variety of  systems and choice of  optimizat ion methods 
to fully judge the usefulness of  generalized ellipsoidal Gaussian basis functions. 

Table 2. Energy optimized exponent scale factors for spherical 
and ellipsoidal Gaussian atomic orbitals in CO 

Atomic orbital 

Optimized scale factors a 

Spherical Gaussian Ellipsoidal Gaussian 

O 2s 1.049 1.043 0.937 
0 2p x, 2py 0.996 1.005 0.949 
0 2p z 1.063 1.085 0.998 
C 2s 1.044 0.962 0.966 
C 2px, 2py 1.324 1.313 1.152 
C 2p z 1.524 1.569 1.467 

a See footnote 1 in Table 1. 
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Table 3. Total energies of HF and CO in various basis sets a 

HF CO 

Spherical Gaussian set 
Original double-zeta b -100.02197 
Original single-zeta c - 99.98842 
Optimized single-zeta c - 100.01342 

Ellipsoidal Gaussian set c -100.01622 

-112.68488 
-112.55545 
-112.60690 

-112.62200 

a Energies in a.u. 
b [4s2P/2 s] combined set from the (9s5P/4 s) primitive set. 
c [3slP/1 s] combined set from the (9s5P/4 s) primitive set. 
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Previous minimal  a tomic  orbital  basis calculations on HF  [29] and CO [30] using expo- 

nential  funct ions  (Slater orbitals) wi th  op t imized  exponent ia l  factors can be compared  

with  the op t imized  spherical Gaussian results in Tables 1 and 2. Due care, however ,  must  

be taken to compare  the square root  o f  the scale factors in these tables wi th  the ratios 

o f  op t imized  and inital exponent ia l  factors found  previously.  When this is done the 

results are seen to be generally similar in spite o f  the great difference in basis type  be tween  

the corresponding investigations. 
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